skip to main content


Search for: All records

Creators/Authors contains: "Fardal, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We obtained Keck/DEIMOS spectra of 556 individual red giant branch stars in four spectroscopic fields spanning 13−31 projected kpc along the northeast (NE) shelf of M31. We present the first detection of a complete wedge pattern in the space of projected M31-centric radial distance versus line-of-sight velocity for this feature, which includes the returning stream component of the shelf. This wedge pattern agrees with expectations of a tidal shell formed in a radial merger and provides strong evidence in favor of predictions of Giant Stellar Stream (GSS) formation models in which the NE shelf originates from the second orbital wrap of the tidal debris. The observed concentric wedge patterns of the NE, west (W), and southeast (SE) shelves corroborate this interpretation independently of the models. We do not detect a kinematical signature in the NE shelf region corresponding to an intact progenitor core, favoring GSS formation models in which the progenitor is completely disrupted. The shelf’s photometric metallicity ([Fe/H]phot) distribution implies that it is dominated by tidal material, as opposed to the phase-mixed stellar halo or the disk. The metallicity distribution ([Fe/H]phot= −0.42 ± 0.01) also matches the GSS, and consequently the W and SE shelves, further supporting a direct physical association between the tidal features.

     
    more » « less
  2. Abstract We measure homogeneous distances to M31 and 38 associated stellar systems (−16.8 ≤ M V ≤ −6.0), using time-series observations of RR Lyrae stars taken as part of the Hubble Space Telescope Treasury Survey of M31 Satellites. From >700 orbits of new/archival Advanced Camera for Surveys imaging, we identify >4700 RR Lyrae stars and determine their periods and mean magnitudes to a typical precision of 0.01 day and 0.04 mag. Based on period–Wesenheit–metallicity relationships consistent with the Gaia eDR3 distance scale, we uniformly measure heliocentric and M31-centric distances to a typical precision of ∼20 kpc (3%) and ∼10 kpc (8%), respectively. We revise the 3D structure of the M31 galactic ecosystem and: (i) confirm a highly anisotropic spatial distribution such that ∼80% of M31's satellites reside on the near side of M31; this feature is not easily explained by observational effects; (ii) affirm the thin (rms 7–23 kpc) planar “arc” of satellites that comprises roughly half (15) of the galaxies within 300 kpc from M31; (iii) reassess the physical proximity of notable associations such as the NGC 147/185 pair and M33/AND xxii ; and (iv) illustrate challenges in tip-of-the-red-giant branch distances for galaxies with M V > − 9.5, which can be biased by up to 35%. We emphasize the importance of RR Lyrae for accurate distances to faint galaxies that should be discovered by upcoming facilities (e.g., Rubin Observatory). We provide updated luminosities and sizes for our sample. Our distances will serve as the basis for future investigation of the star formation and orbital histories of the entire known M31 satellite system. 
    more » « less
  3. null (Ed.)
    ABSTRACT Many phenomenologically successful cosmological simulations employ kinetic winds to model galactic outflows. Yet systematic studies of how variations in kinetic wind scalings might alter observable galaxy properties are rare. Here we employ gadget-3 simulations to study how the baryon cycle, stellar mass function, and other galaxy and CGM predictions vary as a function of the assumed outflow speed and the scaling of the mass-loading factor with velocity dispersion. We design our fiducial model to reproduce the measured wind properties at 25 per cent of the virial radius from the Feedback In Realistic Environments simulations. We find that a strong dependence of η ∼ σ5 in low-mass haloes with $\sigma \lt 106\mathrm{\, km\, s^{-1}}$ is required to match the faint end of the stellar mass functions at $z$ > 1. In addition, faster winds significantly reduce wind recycling and heat more halo gas. Both effects result in less stellar mass growth in massive haloes and impact high ionization absorption in halo gas. We cannot simultaneously match the stellar content at $z$ = 2 and 0 within a single model, suggesting that an additional feedback source such as active galactic nucleus might be required in massive galaxies at lower redshifts, but the amount needed depends strongly on assumptions regarding the outflow properties. We run a 50 $\mathrm{Mpc}\, h^{-1}$, 2 × 5763 simulation with our fiducial parameters and show that it matches a range of star-forming galaxy properties at $z$ ∼ 0–2. 
    more » « less